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Charged particle layers in the Debye limit
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We develop an equivalent of the Debye-Hu¨ckel weakly coupled equilibrium theory for layered classical
charged particle systems composed of one single charged species. We consider the two most important con-
figurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided
by the classical fluctuation-dissipation theorem between the random-phase approximation response functions
and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and
polarization potentials, static structure functions, and static response functions are calculated. The importance
of the perfect screening and compressibility sum rules in determining the overall behavior of the system,
especially in ther→` limit, is emphasized. The similarities and differences between the quasi-two-
dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that
emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by
the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
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I. INTRODUCTION

Layered systems consisting of classical charged parti
have been realized in various laboratory experiments.
amples are ionic layers in Penning traps@1,2# and layers of
charged mesoscopic grains in complex~dusty! plasmas@3#.
The layer formation in trapped cryogenic ions was fi
pointed out on theoretical grounds by Dubin@2# and subse-
quently verified experimentally@1~d!#. Charged particle lay-
ered systems are of importance in many other physical
tems such as semiconductor nanostructures, met
superlattices, nested nanotubes, etc. While these latter
tems are not classical, since the constituent electrons
fully or partially degenerate, a classical modeling provid
in many cases, a good qualitative description. This is es
cially so with regard to theinterlayer correlations, since in
most cases interlayer exchange and tunneling are neglig

While the number of lattice planes,N, in the different
layer configurations can vary, the two extremesN52 and
N@1, (N→`), have attracted the most experimental a
theoretical interest. An important parameter in all scena
is the plasma coupling parameter, representing the rati
the Coulomb energy to kinetic energy. If the system cons
of classical charged particles~ions or grains!, the source of
the kinetic energy is temperature and theintralayer coupling
parameter G5Z2e2/(akBT); a51/Apn is the two-
dimensional ~2D! Wigner-Seitz radius. However, for th
weak coupling (G,1) domain of interest in the present p
per, the length scale is set not by the Wigner-Seitz radius,
rather by the 2D Debye wave numberk52pnZ2e2/(kBT).
In this domain, the coupling strength accordingly is me
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sured by the traditional plasma parameterg5
(Z2e2k)/(kBT)5k2/(2pn)5(2pnZ4e4)/(kBT)2,1; note
the relationshipg52G2. The measure of theinterlayercou-
pling strength between the layers spaced a distanced apart is
characterized by the coupling parameterZ2e2/(dkBT)
5G(a/d)5g/(kd).

Over the past decade, substantial theoretical interest
been directed at the static properties of layered systems.
charged particle bilayers the remarkable influence of the
terlayer coupling on the static response properties was
pointed out by S´wierkowskiet al. @4#, followed by the Monte
Carlo studies of Rapisada and Senatore@5#. The structure and
phonon excitations of the bilayer crystal were analyzed
Goldoni and Peeters@6# and by Falko@7#, leading to the
prediction of structural phase transformations. The structu
features in the strongly coupled bilayer liquid phase w
subsequently examined via a classical hypernetted-chain
culation by Kalman and co-workers@8,9#. More recently,
molecular dynamics studies of both electron-electron a
electron-hole bilayers were done by Donko and co-work
@9,10#, and Weis, Levesque, and Jorge@11#.

As to superlattices, interest in the effect of interlayer
teraction on the static response and screening poten
started with the early random-phase approximation~RPA!
treatment of Visscher and Falicov@12# for a zero-temperature
degenerate system. Going beyond the RPA, Kalman, R
and Golden@13# introduced an iterative scheme to genera
interlayer pair correlation functions from known correlatio
functions of the isolated 2D system. In contrast to the
layer, a more systematic procedure for calculating the p
correlation functions in a superlattice has yet to be work
out.

In this paper we have developed the equivalent of
Debye-Hückel ~DH! weakly coupled equilibrium theory fo
layered classical charged particle systems composed of
single charged species. Layered ionic systems formed
©2002 The American Physical Society07-1
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laboratory experiments are necessarily strongly coupled
are therefore not well described by the present calculat
Semiconductor bilayers and other fully or partially degen
ate systems are, on the other hand, mostly weakly coup
here the classical DH theory would provide a qualitative~but
in the absence of a proper treatment of the exchange, q
titatively unreliable! insight into their static behavior. Neve
theless, the DH calculation is of fundamental theoretical
terest, for it provides the only exact solution for th
correlation and structure functions in layered systems an
such illuminates the interplay of the interparticle coupli
and interlayer separation. We consider the two extreme~and
most easily tractable! and, at the same time, also the mo
important configurations: the bilayer and the infinite sup
lattice. As much as it is possible, we attempt to parallel
treatments for these two systems, emphasizing both the s
larities and differences.

Our model is devoid of all the possible complexities th
arise from an asymmetry between the layers. We assume
all charges, masses, densities, and layer separations are
tical. The quantities of interest that we focus on are the st
density response functionx(k), the related static dielectric
function «(k), and, most notably, the static structure fun
tion S(k); k is the in-plane wave vector. In the case of t
bilayer, these quantities are in fact matrices in the tw
dimensional layer space; for the superlattice, they are ei
infinite-dimensional matrices or, more commonly, depend
the additional wave vectorq, portraying the periodic varia
tion along the superlattice axis.

The DH expressions for theS11(k), S12(k) elements of
the bilayer structure function matrix and their superlatt
counterpartsS00(k), S01(k) have already been reported in
preliminary study by the authors and Ren@14#. In the present
paper, we elaborate on the derivation of these matrix
ments and then go much further in several respects. It is
our purpose to give a detailed account of the physical in
mation that can be gleaned from the structure functions@8,9#,
but rather to demonstrate the overall behavior of the bila
and superlattice structure functions and their companion
correlation functions, in particular their differences and sim
larities. This can, to some extent, be accomplished via
compressibility sum rules@9,15–17#, but a more explicit dis-
play can be provided by the Debye calculation of the pres
paper.

Additional quantities of interest are the polarization p
tential @F̄ i(r ;d)# and the ~total! screened potentia
@F i(r ;d)# in the different layers generated as a response
the presence of a charged impurity placed in one of the
ers. One of the convenient concomitants of the Debye
proximation is that these potentials are directly related to
pair correlation functionshi j (r ) on the one hand, and to th
total correlation energy of the system on the other.

The plan of the paper is as follows. Sections II and
discuss bilayers and superlattices, respectively. For both
figurations, we derive the DH expressions for the intrala
and interlayer structure functions@Si j (k;d)# and we generate
the corresponding equilibrium pair correlation functio
@hi j (r ;d)# and accompanying screened and polarization
tentials. We discuss their remarkable nonmonotonic dep
03110
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dence on the interlayer separation distanced that prevails in
both configurations. We invoke compressibility sum rules
bilayers@9,15–17# and superlattices@16,17#. With the aid of
these sum rules, we analyze the long-wavelength (k→0)
limit of Si j (k) and the corresponding asymptotic (r→`)
behavior ofhi j (r ). Formally, the compressibility rules ex
hibit quite different structures for bilayers and superlattic
and as a result the asymptotic (r→`) behavior of the pair
correlation functions for the two configurations is fundame
tally different. From the physical point of view, these diffe
ent behaviors can be understood by contrasting the qu
two-dimensionality of the bilayer with the quasi-thre
dimensionality of the superlattice. Conclusions are drawn
Sec. IV where the similarities and substantial physical diff
ences between the bilayer and superlattice are discusse

II. CHARGED PARTICLE BILAYERS

A. Response functions

We consider a bilayer model, consisting of two 2D laye
of charged particles~with Z51) of equal areal densitiesn,
separated by a distanced. Each layer is immersed in a neu
tralizing background of opposite charge. The charged p
ticles obey classical statistics. The bilayer is isomorp
to a two-component plasma and its interaction mat
elements aref11(k)5f22(k)52pe2/k, f12(k)5f21(k)
5(2pe2/k)exp(2kd). With the aid off i j (k) andx̄ i j (r ), the
screened~total! density response function, the dielectric m
trix « i j (k), its inverseh i j (k), and the full~external! density
responsex i j (k) can be constructed,

« i j ~k!5d i j 2f i l ~k!x̄ l j ~k!, ~1!

x i j ~k!5x̄ i l ~k!h l j ~k!, ~2!

h i j ~k!5d i j 1f i l ~k!x l j ~k!. ~3!

Summation over repeated indices is understood.
Our purpose in this paper is to calculate the structure

pair correlation functions to lowest order in the couplin
parameterg. This is clearly equivalent to the customary D
approximation. To this order the fluctuation-dissipation re
tions link the Si j (k) matrix elements to the Vlasov~RPA!
x i j (k) matrix elements. In turn, in the Vlasov approximatio
the screened response functionx̄ i j (k) is identical to the re-
sponse function of the noninteracting gas and is necess
diagonal @18#. This feature can be adopted as the start
point for the calculation,

x̄ i j ~k!52bnd i j , ~4!

b[1/(kBT). The full density response matrix is then calc
lated from Eqs.~2! and ~4!,

x i j ~k!52bnh i j ~k!, ~5!

whence from Eqs.~5! and ~3!,
7-2
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h11~k!5h22~k!5
k̃~11 k̃!

~11 k̃!22exp~22k̃d̃!
, ~6a!

h12~k!5h21~k!52
k̃ exp~2 k̃d̃!

~11 k̃!22exp~22k̃d̃!
, ~6b!

( k̃[k/k,d̃[kd). The matrix elements

h11~k50!2152
1

2 S 112d̃

11d̃
D , ~7a!

h12~k50!52
1

2~11d̃!
~7b!

represent the total screening charges residing in layers 1
2, respectively, surrounding aZ511 impurity charge in
layer 1. Expressions~7a! and ~7b! exhibit the expected
monotonic dependence on the layer separationd ~to be con-
trasted with the corresponding nonmonotonic express
~36! for the superlattice!.

B. Structure functions

Invoking the classical fluctuation-dissipation theore
~FDT!

Si j ~k!52
1

bn
x i j ~k! ~8!

and the RPA full density response~5!, one readily obtains

Si j ~k!5h i j ~k!. ~9!

At long wavelengths, Eqs.~9!, ~6a! and ~6b! reproduce the
RPA limit of the expressions

S11~k→0!5
1

2

1

L2N1d̃
1

1

4
F 11

d̃2

~L2N1d̃!2G k̃1O~ k̃2!,

~10a!

S12~k→0!52
1

2

1

L2N1d̃
1

1

4
F 12

d̃2

~L2N1d̃!2G k̃

1O~ k̃2!, ~10b!

derived from the compressibility sum rules@9,15–17#. In this
limit, the direct inverse compressibility L[L11
[b(]P1 /]n1)5b(]P2 /]n2)[L22 equals unity and the
trans-inverse compressibility N[L12[b(]P1 /]n2)
5b(]P2 /]n1)[L21 equals zero. In deriving Eqs.~10a! and
~10b!, it should be emphasized that the expansion
exp(2kd) holds only in the domaink!1/d; in fact, for large
d values this expansion is not very meaningful.

In the d→` limit, we observe thatS12(k)→0 and we
recover the Debye structure functionS11(k)5 k̃/(11 k̃) for
the isolated 2D layer. In the more interestingd50 limit
03110
nd

n

f

where the classical bilayer is collapsed into an isolated
layer, the structure functionsS11(k)5(11 k̃)/(21 k̃) and
S12(k)521/(21 k̃) result from Eqs.~9!, ~6a! and~6b!. This
is by way of saying that in thed50 limit, there is no longer
any distinction between the intralayer and interlayer pair c
relation functionsh11(k) and h12(k). In this limit, nh11(k)
5nh12(k)521/(21 k̃), which we can identify as the DH
pair correlation function for an isolated layer of density 2n.

It is instructive to rotate physical quantities into the spa
spanned by theS1(k) in-phase~1! andS2(k) out-of-phase
~2! directions: S6(k)5S11(k)6S12(k). One then obtains
the compact DH expressions

S6~k!5
k̃

11 k̃6exp~2 k̃d̃!
. ~11!

Then in the long-wavelength limit, one obtains throu
O(k2)

S1~k→0!5
k̃

2
2~12d̃!

k̃2

4
, ~12a!

S2~k→0!5
1

11d̃
1

d̃2

~11d̃!2

k̃

2
1

d̃3~ d̃22!

~11d̃!3

k̃2

12
,

~12b!

in agreement with the RPA limits of the in-phase and out-
phase compressibility sum rules@15# formulated through
O( k̃2) andO( k̃), respectively.

C. Pair correlation functions and potentials

The pair correlation functionshi j (r ) are calculated from

hi j ~r !5gE
0

`

dk̃k̃J0~ k̃r̃ !@Si j ~k!2d i j #. ~13!

Figure 1 shows the respective behavior of theSi j (k) struc-

FIG. 1. Bilayer static structure functionsS11(k) and S12(k) as

functions of dimensionless in-plane wave numberk̃5k/k for layer

separationsd̃5kd50.1, 0.5, 1.0;k52pnZ2e2/(kBT) is the 2D
Debye wave number.
7-3
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GOLDEN, KALMAN, AND KYRKOS PHYSICAL REVIEW E 66, 031107 ~2002!
ture functions, while Fig. 2 shows the behavior of the cor
spondinghi j (r ) pair correlation functions. The divergence
h11(r→0) is a well-known defect of the Debye approxim
tion. The relationhi j (r )5211exp@2bWij(r )#'2bWi j (r )
can be interpreted as defining the potential of the mean fi
Wi j (r ). It is the general feature of the Debye approximati
thatWi j (r ) is identical toF j

( i )(r ), the screened~total! poten-
tial generated in layerj by an impurity of unit charge place
in layer i. Consequently, Fig. 2 also portrays the behavior

FIG. 3. Bilayer polarization potentialsF̄1
(1)(r ) and F̄2

(1)(r ) as
function of dimensionless in-plane distancer̃ for layer separations

d̃50.1, 0.5, 1.0;F̄ j
( i ) is the polarization potential generated in lay

j by an impurity of unit charge placed in layeri. The inset shows the

variation ofF̄2
(1)(r 50) with d̃.

FIG. 2. Bilayer pair correlation functions h11(r )
5(1/N)(k@S11(k)21#eik•r and h12(r )5(1/N)(kS12(k)eik•r as
functions of dimensionless in-plane distancer̃ 5kr for layer sepa-

rationsd̃50.1, 0.5, 1.0~N is the number of particles per layer!. Also
shown is the behavior of the screened potentials known to drop
as 1/r 3 for r→` in the plane of the bilayer. The inset showin

r̃ 3h11(r ) and r̃ 3h12(r ) as functions ofd̃ for r→` is generated from
Eqs.~14a! and ~14b!.
03110
-

ld

f

the screened potential. Figure 3 shows the behavior of

polarization potential,F̄ j
( i )(r )5F j

( i )(r )2F̂ j
( i )(r ); F̂ j

( i ) is the
external potential due solely to the impurity. At the poi
where the impurity resides, the polarization potent

F̄1
(1)(r 50)5(bn/A)(kf1m(k)hmn(k)fn1(k) is related to

the correlation energy Ecorr5( iEii 1(1/2)( i j Ei j

52E111E12; Ei j 5n2(kf i j (k)hi j (k) ( iÞ j ), Eii

5(n2/2)(kf i i (k)hii (k). Ecorr can now be expressed a

Ecorr5nAF̄1
(1)(r 50). Similar to the 2D isolated monolaye

in the Debye approximation, the intralayer~11, 22! contribu-
tions are logarithmically divergent, whereas the interlay
~12, 21! contributions are finite; the usual remedy for th
logarithmic divergence is to invoke the customaryk/g in-
verse Landau distance cutoff.

We turn now to the analysis of thed dependence
of F j

( i )(r ;d) @or equivalently hi j (r ,d)] at a fixed r.
While F1

(1)(r ,d) is a monotonically decreasing functio
of d, F2

(1)(r ,d) is not ~see Figs. 4 and 5!. The physical ex-
planation for this rather counterintuitive behavior can be u
derstood by referring to the inset to Fig. 4 which shows
variation of the two separate charge contributions
F2

(1)(r ,d), one coming from charges in its own layer 2 an
the other from charges in layer 1 where the impurity resid
The first contribution is negative, because it is generated
the negative screening charge; it decreases in absolute v
with increasingd because the amount of total charge in lay
2 decreases with increasing layer separation@cf. Eq. ~7b!#.
The second contribution is positive because the net charg
layer 1 is positive; it decreases with increasingd because a
larger portion of the screening charge accumulates in lay
with increasing layer separation@cf. Eq. ~7a!#. The combina-
tion of these two effects leads to the nonmonotonic beha
as shown in the inset to Fig. 4.

FIG. 4. Bilayer screened potentialsF1
(1)(r ,d) and F2

(1)(r ,d)

~normalized with respect to their values atd̃51) as functions ofd̃
for fixed r̃ 50.25, 0.5. Note that whileF1

(1)(r ,d) is a monotonically
decreasing function ofd, F2

(1)(r ,d) is not. The physical explanation
is facilitated by the inset showing the variation of the two separ
charge contributions toF2

(1)(r ,d), one coming from its own layer 2
and the other from layer 1 where the unit charge impurity resid
ff
7-4
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D. Asymptotic behavior

It is known that forr→` the screened potential in a 2
layer drops off like 1/r 3, reflecting the fact that an impurity
charge and its screening cloud constitute a quadrupole a
leading contribution to their combined charge distribution.
the bilayer the quadrupole moment is supplemented b
dipole moment in the direction perpendicular to the lay
whose potential also drops off as 1/r 3 for r→` in the plane
of the bilayer. The asymptotic expressions resulting from
~13! display this expected behavior~see inset in Fig. 2! with
coefficients generated from theO(k) terms in compressibil-
ity sum rules~10a! and ~10b!,

lim
r→`

r̃ 3h11~r !52
g

4
F 11S d̃

11d̃
D 2G , ~14a!

lim
r→`

r̃ 3h12~r !52
g

4
F 12S d̃

11d̃
D 2G , ~14b!

where r̃ 5kr .

III. SUPERLATTICES

A. Response functions

We turn next to the calculation of the DH structure fun
tions for the infinite superlattice consisting ofN(→`)
equally spaced electron plasma 2D monolayers, each of l
but bounded areaA and parallel to thexy plane; d is the
spacing between adjacent lattice planes andn is the mean
areal density of each monolayer. The periodic structure of
infinite superlattice configuration allows one to introduce
rect and inverse Fourier transformations along thez axis,
e.g.,

«~k,q!5 (
l 5 i 2 j

« i j ~k!exp@2 iq~zi2zj !#, ~15!

FIG. 5. Bilayer three-dimensional perspective showing variat

of h12(r ,d) with both r̃ andd̃. Note the strong nonmonotonic varia
tion of h12(r ,d) with d for large r values.
03110
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« i j ~k!5
1

N ( *
q

«~k,q!exp@ iq~zi2zj !#, ~16!

wherezj5 jd ( j 50,61,62,...) locates thej th layer above or
below the reference lattice plane atz50. The (* notation
indicates that the summation is restricted to the first Brillou
zone. We observe that for the infinite superlattice, quanti
such as« i j (k), Si j (k), etc. remain invariant under translatio
of their layer indices, e.g.,« i j 5« i 2 j ,0 .

Proceeding as in Sec. II, we introduce the interaction
tential

f~k,q!5
2pe2

k
F~k,q!, ~17!

where the well-known superlattice form factor

F~k,q!5
sinh kd

coshkd2cosqd
~18!

is the layer-space Fourier transform@prescribed by Eq.~15!#
of exp(2kuzi2zju). The superlattice counterparts of Eqs.~1!,
~2!, and~3! are then given by

«~k,q!512f~k,q!x̄~k,q!, ~19!

x~k,q!5x̄~k,q!h~k,q!, ~20!

h~k,q!511f~k,q!x~k,q!; ~21!

x̄(k,q) and x(k,q) are the screened~total! and full ~exter-
nal! density response functions, respectively, andh(k,q)
51/«(k,q) is the inverse dielectric response function.

Paralleling the weak coupling calculation of Sec. II, Eq
~20!, ~21!, and the density response of the noninteracting g

x̄~k,q!52bn, ~22!

yield the full density response and inverse dielectric fun
tions

x~k,q!52bnh~k,q!, ~23!

h~k,q!5
1

11
1

k̃
F~k,q!

. ~24!

The zero-temperature degenerate RPA equivalent of Eq.~23!
has been calculated in Ref.@12#.

B. Structure functions

Invoking the superlattice static FDT@19#,

S~k,q!52
1

bn
x~k,q!, ~25!

and the RPA full density response~23!, one readily obtains

S~k,q!5h~k,q!. ~26!

n

7-5
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At long wavelengths the structure function assumes the f

S~k→0,q!5
12cosqd

12cosqd1d̃
1

21cosqd

~12cosqd1d̃!2

d̃3k̃2

6
,

~27!

consistent with the out-of-phase compressibility rule

S~k→0,q!5
12cosqd

L~q!~12cosqd!1d̃

1
21cosqd

@L~q!~12cosqd!1d̃#2

d̃3k̃2

6
; ~28!

L~q![b (
l 5 i 2 j

S ]Pi

]nj
D

T

exp@2 iq~zi2zj !# ~29!

is the inverse compressibility function that in the RPA lim
is equal to unity for all values ofq. In the q50 ~in-phase!
limit, the system exhibits 3D one-component-plasma~OCP!-
like behavior portrayed by the long-wavelength expansion
the structure function,

S~k→0,q50!5
k2

k3D
2 2

k4

k3D
4 F11

k3D
2 d2

12 G , ~30!

consistent with the in-phase compressibility sum rule@16#;
k3D5A4pne2b/d is the 3D-like Debye wave number fo
the superlattice.

In order to see the behavior of the individual latti
planes, one can generate the hierarchy of structure funct
S0m(k), (m50,61,62,...) from Eqs.~24!, ~26!, and

S0m~k!5
1

N ( *
q

S~k,q!exp~ iqmd!

5
d

2p E
2p/d

p/d

dqS~k,q!exp~ iqmd!. ~31!

Carrying out the integration, one obtains

S0m~k!5d0m2

FK~ k̃,d̃!2 AK2~ k̃,d̃!21G umu

AK2~ k̃,d̃!21

sinhk̃d̃

k̃
,

~m50,61,62,...! ~32!

K~ k̃,d̃![
sinhk̃d̃

k̃
1coshk̃d̃. ~33!

It is of some interest to display the intralayerm50 and
nearest neighborm51 Debye structure functions individu
ally @14,19b#
03110
m

f

ns

S00~k!512
1

A11 k̃212k̃ cothk̃d̃

, ~34!

S01~k!5
1

k̃
sinhk̃d̃H 12

11 k̃ cothk̃d̃

A11 k̃212k̃ cothk̃d̃
J . ~35!

Figure 6 shows the variation of the structure functio
S00(k), S01(k), andS02(k) with k̃.

At long wavelengths the small-k expansion of Eq.~32!
yields

S0m~k→0!'d0m2A d̃

21d̃
F ~11d̃!2Ad̃~21d̃!G umu

3H 12
d̃2

6 F 312d̃

d̃~21d̃!
1

umu~31d̃!

Ad̃~21d̃!
G k̃2J . ~36!

We note that the matrix elementsh00(k50)215

2Ad̃/(21d̃) andh0m(k50) (m561,62,63,...) given di-
rectly byS0m5h0m from Eq. ~36! represent the total screen
ing charges residing in lattice plane 0 and in all the oth
(mÞ0) lattice planes, respectively, surrounding aZ561
impurity charge in lattice plane 0. It is remarkable that,
contrast to the expected monotonic decrease of the scree

FIG. 6. Superlattice static structure functionsS00(k), S01(k),

andS02(k) as functions of dimensionless in-plane wave numbek̃

for layer separationsd̃50.1, 0.5, 1.0. The inset, generated from E

~36!, shows the nonmonotonic variation ofuS0m(k50)u with d̃ for
layer indicesm51,2,3,4. Note thatS0m(k50) also represents the
total charge residing in lattice planemÞ0.
7-6
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charge in themth (mÞ0) lattice plane with increasingd @cf.
Eq. ~7! for the bilayer#, the charge exhibits a maximum a
somed5dm value ~see inset in Fig. 6!. The physical expla-
nation for this behavior is discussed below.

The nonanalytic behavior ind̃ exhibited in Eq.~36! is
quite remarkable, especially so when compared with E
~10a! and~10b! for small k and the combination of Eqs.~9!,
~6!, and~7! for arbitraryk. This feature notwithstanding, th
total S(k,q50) reverts to its expected analytic behavior,

S~k,q50!5 (
m52`

`

S0m~k!

512
sinhk̃d̃

k̃AK221
(

m52`

`

@K2AK221# umu

511
sinhk̃d̃

k̃AK221
H 122 (

m50

`

@K2AK221# umuJ
511

sinhk̃d̃

k̃AK221
2

2 sinhk̃d̃

k̃AK221
F 1

12K1AK221
G

512
sinhk̃d̃

k̃~K21!
5

1

11
F~k,0!

k̃

. ~37!

C. Correlation functions and potentials

We turn now to the equilibrium pair correlation function
h00(r ), h01(r ), andh02(r ), which are generated from

h0m~r !5gE
0

`

dk̃k̃J0~ k̃r̃ !@S0m~k!2d0m#, ~38!

and displayed in Fig. 7. The divergence ofh00(r→0) is
again a well-known defect of the Debye approximation.

The development of the relationships among the supe
tice pair correlation functions, the potentials, and the co
lation energy follows the same pattern as in the bila
case. Similarly to the bilayer, the relationh0m(r )521
1exp@2bW0m(r )#'2bW0m(r ) can be interpreted as defin
ing the potential of the mean fieldW0m(r ); in the Debye
approximation,W0m(r ) is identical toFm

(0)(r ), the screened
~total! potential generated in lattice planem by an impurity
of unit charge placed in reference plane 0. Consequently,
7 also portrays the behavior of the screened potential. Fig
8 shows the behavior of the polarization potential,F̄m

(0)(r )

5Fm
(0)(r )2F̂m

(0)(r ); F̂m
(0) is the external potential due sole

to the impurity. To see how the polarization potential rela
to the correlation energy, we first observe that for anN-layer
structure with the 0-lattice plane located at the bottom of
stack, the correlation energy isEcorr5NE001(m51

N21(N
2m)E0m ; E0m5n2(kf0m(k)h0m(k)(mÞ0), E005(n2/2)
03110
s.

t-
-
r

ig.
re

s

e

(kf00(k)h00(k). For the case of the infinite superlattic
~with the 0 lattice plane relocated to the interior of the stac!,
the correlation energy is therefore given byEcorr5( iEii

1(1/2)( iÞ jEi j 5NE001(N/2)(m51
` E0m . Then the polariza-

tion potential at the point where the particle reside
F̄0

(0)(r 50)5(bn/A)(kf0m(k)hmn(k)fn0(k), is related to

the correlation energy throughEcorr5(N/2)nAF̄0
(0)(r 50).

Similarly to the bilayer and the 2D monolayer, the intralay
E00 contribution is logarithmically divergent, whereas the i
terlayerE0m (m51,2,...) contributions are finite. The pola

FIG. 7. Superlattice pair correlation functionsh00(r ), h01(r ),
and h02(r ) as functions of dimensionless in-plane distancer̃ for

layer separationsd̃50.1, 0.5, 1.0. It also portrays the behavior
the screened potentialsF0

(0)(r ), F1
(0)(r ), and F2

(0)(r ); Fm
(0)(r ) is

the ~total! screened potential generated in layerm by an impurity of
unit charge placed in reference layer 0. The inset shows the va

tion of the exponential decay constantsB0(d̃), B1(d̃), andB2(d̃)

calculated from Eq.~42!. The exponential decay constantC(d̃)

@which very nearly coincides withB0(d̃)] refers to the asymptotic
(m→`) behavior ofh0m(r 50) along thez axis.

FIG. 8. Superlattice polarization potentialsF̄0
(0)(r ), F̄1

(0)(r ),

and F̄2
(0)(r ) as functions of in-plane dimensionless distancer̃ for

separation distanced̃50.1, 0.5, 1.0.
7-7
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GOLDEN, KALMAN, AND KYRKOS PHYSICAL REVIEW E 66, 031107 ~2002!
ization potentialsF̄m
(0)(r 50) (m561,62,...) in the adja-

cent lattice planes also remain finite. Unlike the bilay
however, in thed→0 limit, the system assumes a 3D-lik
behavior marked by the disappearance of the logarithmic
vergence withF̄0

(0)(r→0)'e2k3D .

D. Asymptotic behavior

In contrast to the bilayer configuration, the large-r behav-
ior of the screened potentials is not given by an inve
power law, since forr→` the superlattice behaves like a 3
bulk system. Indeed, ford sufficiently small (d̃→0), the
asymptotic behavior of theumu50,1,2,3,... hierarchy of
screened potentials can be well described by the 3D O
like formula

h0m~r→`!52bFm
~0!~r→`!'Am~1/r̃ !exp~2Bmr̃ !

~39!

fitted to h0m(r ) computed from Eqs.~38! and ~32!. Analyti-
cal formulas forAm(d̃) andBm(d̃) can be derived by equat
ing the small-k Debye structure function~36! to the small-k
equivalent of Eq.~39!,

S0m~k→0!'d0m1
Am~ d̃!

gBm~ d̃!
F12

k̃2

2Bm
2 ~ d̃!

G . ~40!

One obtains

Am~ d̃!52

g)F ~11d̃!2Ad̃~21d̃!G umu

~312d̃!1umu~31d̃!Ad̃~21d̃!

,0, ~41!

Bm~ d̃!5)A 11~2/d̃!

312d̃1umu~31d̃!Ad̃~21d̃!

. ~42!

FIG. 9. Superlattice pair correlation functionh0m(r 50) as a

function of layer indexm for d̃50.1, 0.3, 0.5. The inset indicate
that asm→`, a 3D-like behavior similar to Eq.~39! prevails along
the superlattice axis.
03110
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The above analytical expressions forB0(d̃), B1(d̃), and
B2(d̃) are displayed in the inset to Fig. 7.

Comparison ofS01(k) andS02(k) shows the expected de
cay of correlations with increasingm. To analyze this point
further, we have calculatedh0m(r 50). Its behavior as a
function of the layer indexm is displayed in Fig. 9. As
m→`, one would expect that a 3D behavior similar to E
~39! prevails in thez direction. This is corroborated by th
inset to Fig. 9 which also shows that asd→0, h0m(r 50)
becomes proportional to (1/umud)exp(2umuk3Dd). The com-
parison of the decay constants along thez axis and in-plane
directions is shown in the inset in Fig. 7. There is no disce
able difference between the decay constantsBm and C per-
taining to ther and z directions, respectively, that woul
indicate an anisotropy of the screening. A similar conclus
was reached by Visscher and Falicov@12#.

E. d dependence

As to thed dependence of theFm
(0)(r ,d), or equivalently

of theh0m(r ,d), at a fixedr, one encounters a nonmonoton
d dependence similar to that found in the bilayer configu
tion ~Figs. 10 and 11!. Unlike the bilayer, however, the su
perlattice exhibits more pronounced extrema and the ph
cal mechanism leading to the development of the extrem
somewhat different. The difference originates from the pe
liar d→0 behavior of the superlattice. In this limit, all th
lattice planes~an infinite number of them! share the screen
ing charge equally and therefore, in contrast to the bilay
the screening charge on each individual lattice plane goe
zero. As the lattice planes recede from each other, the ne
layers assume their privileged role by acquiring the bigg
share of the screening charge. Thus the screening charg

FIG. 10. Superlattice screened potentialsF0
(0)(r ,d), F1

(0)

(r ,d), andF2
(0)(r ,d) ~normalized with respect to their values atd̃

51) as functions ofd̃ for fixed r̃ 50.25, 0.5. Note the nonmono
tonic d dependence similar to that found in the bilayer configu
tion: the physical explanation is facilitated by the inset showing
variation of the two separate charge contributions toF1

(0)(r ,d), one
coming from its own layer 1, where the potential is measured,
the other from reference layer 0, where the unit charge impu
resides.
7-8
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CHARGED PARTICLE LAYERS IN THE DEBYE LIMIT PHYSICAL REVIEW E66, 031107 ~2002!
these lattice planes increases to a maximum at some cr
separationdm , as can be inferred from the discussion imm
diately following Eq.~36!. Further increase ofd, however,
leads to a decrease of the screening charge for reasons
cussed in relation to the bilayer. This behavior is shown
the inset to Fig. 10. The extrema inFm

(0)(r ,d) are now the

FIG. 11. Superlattice three-dimensional perspective show

variation of h00(r ,d), h01(r ,d), and h02(r ,d) with both r̃ and d̃.
Note the difference in the behavior ofh as a function ofd between
the bilayer~Fig. 5! and the superlattice~this figure!.
03110
al
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combined result of the nonmonotonic variation of the scre
ing charge~peculiar to the infinite superlattice! and of the
effect shared with the bilayer as described in Sec. II~see
inset to Fig. 4!.

Finally, we note a remarkable recursion relation th
makes it possible to generate the hierarchy of Four
transformed interlayer pair correlation functionsh0m(k)
(mÞ0) from h01(k) andh00(k). From Eq.~32! and the re-
lation S0m(k)5d0m1nh0m(k), we observe that

h0m~k!5@h00~k!#12umu@h01~k!# umu. ~43!

A more illuminating way of expressing the same relations
is by way of introducing the transfer functiont(k)
5h01(k)/h00(k)5K2AK221; Eq. ~43! then becomes

h0m~k!5@ t~k!# umuh00~k!. ~44!

In view of Eq. ~26!, similar recursion relations exist fo
h0m(k). The existence of the latter was postulated, but
derived, by Visscher and Falicov@12#.

IV. CONCLUSIONS

In this paper we have developed an equivalent of
Debye-Hückel ~DH! weakly coupled equilibrium theory fo
layered classical charged particle systems composed of
single charged species. We have considered the two m
important configurations, the charged particle bilayer and
infinite superlattice. The approach is based on the link p
vided by the classical fluctuation-dissipation theorem
tween the RPA response functions and the Debye equilibr
pair correlation function@bilayer Eq.~8! and superlattice Eq
~25!#. The DH results are of fundamental interest since th
are based on the only exact calculation available for laye
systems and, as such, elucidate the effect of the interla
separation on particle correlations.

We have calculated pair correlation functionshi j (r ),
screened and polarization potentialsF j

( i )(r ) and F̄ j
( i )(r ),

static structure functionsSi j (k), and static response func
tions x i j (k), h i j (k) in layer space, and in addition, in th
case of the superlattice, in the Fourier~k, q! representation.
The values of the latter in thek→0 limit are consistent with
the earlier derived@9,15–17# perfect screening and com
pressibility sum rules. With the aid of the sum rules one c
analyze the asymptotic behavior of the correlation functio
and verify the expected algebraicr 23 decay~for the bilayer!
and exponential decay~for the superlattice! for r→`. The
monotonic decay ofhi j (r ) in r @or of Si j (k) in k#, character-
istic of the weakly correlated regime, prevails for all lay
separations. On the other hand, the rather unexpected be
ior that emerges from the analysis is the marked nonmo
tonic dependence of the screened potential and of the co
lations on the layer separationd. In other words, in a certain
parameter domain an increase in the distance between la
leads to a locally enhanced screened potential or correla
In the case of the superlattice, for smalld values, the

g
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quasi-3D character of the system renders a different phys
reason for a similar nonmonotonic behavior even of the to
screening charges carried by the individual lattice planes
would be interesting to contemplate the possible experim
tal verification of these effects.
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